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13.11 Numerical Use of the Sampling Theorem

In §6.10 we implemented an approximating formula for Dawson’s integral due to
Rybicki. Now that we have become Fourier sophisticates, we can learn that the formula
derives fromnumerical application of the sampling theorer§1@.1), normally considered to
be a purely analytic tool. Our discussion is identical to RybliEki

For present purposes, the sampling theorem is most conveniently stated as follow%
Consider an arbitrary functiog(t) and the grid of sampling points, = « + nh, wheren =
ranges over the integers anadis a constant that allows an arbitrary shift of the sampling %
grid. We then write 5
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g(t) = Z g(tn) sinc E(t —tn) +e(t) (13.11.3 <9;
n=-—oo o

B

wheresincz = sinz/z. The summation over the sampling points is called sa@pling
representation of g(t), ande(t) is its error term. The sampling theorem asserts that the
sampling representation is exact, thatdig,) = 0, if the Fourier transform o§(¢),

G(w) = /jo g(t)e™" dt (13.11.2

vanishes identically folw| > 7 /h.

When can sampling representations be used to advantage for the approximate numeri
computation of functions? In order that the error term be small, the Fourier tran&fGemn
must be sufficiently small fojw| > 7/h. On the other hand, in order for the summation
in (13.11.1) to be approximated by a reasonably small number of terms, the fug¢tion
itself should be very small outside of a fairly limited range of valueg.ofThus we are
led to two conditions to be satisfied in order that (13.11.1) be useful numerically: Both the
function g(¢) and its Fourier transfornd/(w) must rapidly approach zero for large values
of their respective arguments.

Unfortunately, these two conditions are mutually antagonistic — the Uncertainty Princi- = ¢
ple in quantum mechanics. There exist strict limits on how rapidly the simultaneous approac
to zero can be in both arguments. According to a theorem of Haldy ¢(¢) = O(e*tz)
as|t| — oo and G(w) = O(e*“’z/“) as |w| — oo, theng(t) = Ce™", whereC' is a
constant. This can be interpreted as saying that of all functions the Gaussian is the mo
rapidly decaying in botht andw, and in this sense is the “best” function to be expressed
numerically as a sampling representation.

t2

Let us then write for the Gaussigi(t) = e * ,
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e = Z e 'n sinc %(t —tn) +e(t) (13.11.3

n=-—oo

The errore(t) depends on the parametdrsand o as well as or, but it is sufficient for
the present purposes to state the bound,

le(t)| < e~ /2M)* (13.11.4

which can be understood simply as the order of magnitude of the Fourier transform of th
Gaussian at the point where it “spills over” into the regjan > = /h.

When the summation in (13.11.3) is approximated by one with finite limits, say from
No — N to No + N, whereNj is the integer nearest toa/h, there is a further truncation
error. However, ifN is chosen so thaV' > 7/(2h?), the truncation error in the summation
is less than the bound given by (13.11.4), and, since this bound is an overestimate, we
shall continue to use it for (13.11.3) as well. The truncated summation gives a remarkably
accurate representation for the Gaussian even for moderate valu¥s ofor example,
le(t)] < 5x 1075 forh =1/2andN = 7; |e(t)] < 2 x 107 for h = 1/3 and N = 15;
and|e(t)] < 7 x 107*® for h = 1/4 and N = 25.
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One may ask, what is the point of such a numerical representation for the Gaussian,
which can be computed so easily and quickly as an exponential? The answer is that many
transcendental functions can be expressed as an integral involving the Gaussian, and by
substituting (13.11.3) one can often find excellent approximations to the integrals as a sum
over elementary functions.

Let us consider as an example the functiofx) of the complex variable = x + iy,
related to the complex error function by

w(z) = e erfc(—iz) (13.11.5
having the integral representation
g 7t2
wiz)= = [ e dt (13.11.6

T Jo t—2

where the contou€’ extends from-oo to oo, passing below (see, e.gl[3]). Many methods
exist for the evaluation of this function (e.@#]). Substituting the sampling representation
(13.11.3) into (13.11.6) and performing the resulting elementary contour integrals, we obtai

n_—mi(a—z)/h
~ § ' he 1T (=1)" (13.11.3
m tn — 2

n=-—oo

where we now omit the error term. One should note that there is no singularity-as,,
for somen = m, but a special treatment of theth term will be required in this case (for
example, by power series expansion).

An alternative form of equation (13.11.7) can be found by expressing the complex expos
nential in (13.11.7) in terms of trigonometric functions and using the sampling representatlo
(13.11.3) withz replacingt. This yields
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(=1)"cosm(a— z)/h
th — 2

e 1 & ez l—
w(z) e +m’ Z he (13.11.8

n=—oo
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This form is particularly useful in obtaining Re(z ) when|y| < 1. Note that in evaluating
(13.11.7) the exponential inside the summation is a constant and needs to be evaluated orfiye
once; a similar comment holds for the cosine in (13.11.8).

There are a variety of formulas that can now be derived from either equation (13.11.7
or (13.11.8) by choosing particular valuescaaf Eight interesting choices are: = 0, z, iy,
or z, plus the values obtained by addihg2 to each of these. Since the error bound (13.11.3)
assumed a real value af the choices involving a complex are useful only if the imaginary
part of z is not too large. This is not the place to catalog all sixteen possible formulas, and w
give only two particular cases that show some of the important features.

First of all letaw = 0 in equation (13.11.8), which yields,
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SO | —am2 1 —(=1)" cos(wz/h)
w(z)me "+ — n;)o he oy (13.11.9
This approximation is good over the entirgplane. As stated previously, one has to treat the
case where one denominator becomes small by expansion in a power series. Formulas
the casex = 0 were discussed briefly {@]. They are similar, but not identical, to formulas
derived by Chiarella and Reichiél, using the method of Goodwll.

Next, leta = z in (13.11.7), which yields

r
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7(z nh)?

w(z) ~e” ——Z (13.11.1Q

n odd

the sum being over all odd integers (positive and negative). Note that we have made the
substitutionn — —n in the summation. This formula is simpler than (13.11.9) and contains
half the number of terms, but its error is worse ifs large. Equation (13.11.10) is the source

of the approximation formula (6.10.3) for Dawson'’s integral, useg6iri0.
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